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This paper proposes a methodology for the analysis and tuning of controllers
using control verification metrics. These metrics, which are introduced in a com-
panion paper, measure the size of the largest uncertainty set of a given class for
which the closed-loop specifications are satisfied. This framework integrates de-
terministic and probabilistic uncertainty models into a setting that enables the
deformation of sets in the parameter space, the control design space, and in the
union of these two spaces. In regard to control analysis, we propose strategies that
enable bounding regions of the design space where the specifications are satisfied by
all the closed-loop systems associated with a prescribed uncertainty set. When this
is unfeasible, we bound regions where the probability of satisfying the requirements
exceeds a prescribed value. In regard to control tuning, we propose strategies for
the improvement of the robust characteristics of a baseline controller. Some of
these strategies use multi-point approximations to the control verification metrics
in order to alleviate the numerical burden of solving a min-max problem. Since
this methodology targets non-linear systems having an arbitrary, possibly implicit,
functional dependency on the uncertain parameters and for which high-fidelity sim-
ulations are available, they are applicable to realistic engineering problems.
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Acronyms

CDV : Critical Design Value
CPV : Critical Parameter Value
CSR : Critical Similitude Ratio
MS : Maximal Set
PSM : Parametric Safety Margin
RI : Reliability Index

I. Introduction

Over the last two decades there has been a flurry of research concentrating on robust stability to
real uncertain parameters. Suffice it is to say there are now a number of results applicable to linear
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systems having linear uncertainty structures (see [1–7] and their bibliographies) and polynomial
parameter dependencies (see [5–7]). At the control verification stage, we usually have a high-
fidelity dynamic model for which a deterministic or probabilistic uncertainty model is available,
and where stability and performance specifications are both present. This commonly entails a non-
linear closed-loop system where the functional relationship between the design specifications and
the uncertainty is arbitrary and may only be known implicitly, e.g., the dependence of the time
response of a nonlinear system on the initial condition. Under these conditions, the vast majority
of assumptions behind robust and adaptive control methods (e.g., linear dynamics, multi-affine
parameter dependencies, existence of matching conditions) are inapplicable, unverifiable, or require
over-bounding. Even though such assumptions enable a mathematically rigorous manipulation of
the problem, only the system’s physics will validate the effectiveness of the resulting controllers.

The methodology proposed herein will not force the physics to fit into a conveniently posed
mathematical framework, but it will develop mathematics that enable the analysis and tuning of
controllers according to their performance in dynamic models having varying levels of fidelity. This
implies that the structure of the plant is arbitrary and a baseline controller, possibly designed using
a simpler dynamic model and carrying along a set of assumptions we do not need/want to know
about, is available. Few methods in the literature8–11 deal with systems of this complexity, those
based on Monte Carlo analysis being the most widely used.12,13 In regard to control analysis,
we propose strategies that enable bounding regions of the design space (i.e., the space of control
gains for a fixed control structure) where the specifications are satisfied by all the closed-loop
systems associated with a prescribed uncertainty set. When this is unfeasible, we bound regions
where the probability of satisfying the specifications exceeds a prescribed value. The search for
robustly optimal controllers can be efficiently made by constraining the admissible design space to
these bounding sets. In regard to control tuning, we propose strategies that improve the robust
characteristics of a baseline controller by maximizing the control verification metrics proposed in
Reference [14]. Formulations that alleviate the numerical burden of solving a min-max problem are
also proposed.

This paper is organized as follows. Section II introduces the notions and formulations required
to deform sets in the parameter space. This is followed by Section III, where extensions that allow
for the exploration of the design space are considered. Section IV presents formulations that enable
the search for robustly optimal controllers, including some that relax the numerical demands of the
search. As an example, a baseline controller originally designed for the robust control challenge
problem posed in the 1990 American Control Conference is tuned. Finally, a few concluding remarks
close the paper.

II. Background

This section presents a summary of the developments in Reference [14] that are essential to this
paper. Interested readers should resort to this reference for additional details.

II.A. Concepts and Notions

The concern in this paper is the analysis and tuning of controlled systems having a parametric
mathematical model. The parameters which specify the closed-loop system are grouped into two
categories: uncertain parameters, which are denoted by the vector p, and the control design pa-
rameters, which are denoted by the vector d. While the plant model depends on p, the controller
depends on d.

The uncertainty model of p can be deterministic or probabilistic. A deterministic uncertainty
model is prescribed by the Uncertainty Set ∆, while a probabilistic one is prescribed by a random
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vector. The distribution of this vector is specified by the joint probability density function fp(p)
defined over ∆. The uncertainty set of the probabilistic model is commonly called the Support Set.
Hereafter, the terms uncertainty set and support set will be used interchangeably. Any member
of the uncertainty set is called a Realization. The Nominal Parameter value, denoted as p̄, is a
parameter realization regarded as a good deterministic representation of p. Additionally, we will
call the set of control design parameters of a baseline controller the Nominal Design point, d̄.

Stability and performance requirements for the closed-loop system will be prescribed by the
set of constraint functions, g(p,d) < 0, which depend on the uncertain and control parameters.
Throughout this paper, it is assumed that vector inequalities hold component wise. The con-
troller associated with d̄ is deemed acceptable if the constraints are satisfied for enough, if not all,
parameter realizations.

Sets in the parameter and design spaces, instrumental to the developments that follow are
introduced next. The Failure Domain is given bya

F j
p,d

∆= {〈p,d〉 : gj(p,d) ≥ 0}, (1)

Fp,d
∆=

dim(g)⋃

j=1

F j
p,d . (2)

While Equation (1) describes the failure domain corresponding to the jth requirement, Equation
(2) describes the failure domain for all requirements. The Non-Failure Domain is the complement
set of the failure domain and will be denotedb as Fc. The names “failure domain” and “non-
failure domain” are used because in the failure domain at least one constraint is violated while, in
the non-failure domain, all constraints are satisfied. The solution set of equation maxj{gj} = 0
usually partitions the space into these two domains. The projection of the failure domain onto the
parameter space when the design point d is kept at its nominal value d̄, is given by

Fp(d̄) ∆= {p : 〈p, d̄〉 ∈ Fp,d}. (3)

Likewise, if the parameter point p is kept at its nominal value p̄, the projection of the failure
domain onto the design space is given by

Fd(p̄) ∆= {d : 〈p̄,d〉 ∈ Fp,d}. (4)

Expressions corresponding to a particular requirement result from using F j instead of F in these
two equations. The Feasible Design Space, E , the Robust Design Space, Q, and the (1− ε)-Probable
Design Space, D, are given by

E(p̄) ∆= {d : g(p̄,d) < 0} , (5)

Q(∆) ∆= {d : g(p,d) < 0,∀p ∈ ∆}, (6)

D(fp, ε) ∆= {d : P [g(p,d) ≥ 0] ≤ ε}, (7)

where P [·] is the probability operator based on the density function fp and ε ∈ [0, 1]. Figure
1 illustrates relevant spaces in a two dimensional setting. Note that Q ⊂ E when p̄ ∈ ∆, and
Q ⊂ D(fp, ε1) ⊂ D(fp, ε2) for all 0 < ε1 < ε2 ≤ 1. Additionally, we have Ec = Fd(p̄), D(fp, 0) = Q
and D(fp, 1) = Rdim(d). The controller with gains d̄ will be called Robust if Fp(d̄) and ∆ do not
overlap. In such a case, d̄ belongs to the robust design space. Otherwise, the controller will be
called Non-robust. The level of robustness of a controller is related to the size and geometry of its
corresponding non-failure domain.

aThroughout this paper, super-indices are used to denote a particular vector or set while sub-indices refer to vector
components, e.g., pj

i is the ith component of the vector pj .
bThe complement set operator will be denoted as the super-index c.
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Figure 1. Relevant parameter- and design-spaces.

II.B. Set Deformations

The mathematical background for deforming sets in the parameter space is presented herein. In
this section, the design point will be kept fixed at its nominal value d̄, in which case the relevant
failure domains are Fp(d̄) and F j

p(d̄). For simplicity in the notation, we will denote these sets F
and F j .

Let Ω be a set, called the Reference Set, whose geometric center is the nominal parameter p̄.
The geometry of this set will be prescribed according to the levels of uncertainty in p. One possible
choice for the reference set is a hyper-sphere. The hyper-sphere of radius R centered at p̄, denoted
as S(p̄, R), is defined by

S(p̄, R) = {p : ‖p̄− p‖ ≤ R} .

Another choice might be to confine each component of the reference set to a bounded interval. This
leads to a hyper-rectangular set. If m > 0 is the vector of half-lengths of the sides of such a set,
the hyper-rectangle R(p̄,m) is defined by

R(p̄,m) = {p : p̄−m ≤ p ≤ p̄ + m]} .

For the sake of clarity, the presentation that follows concentrates on the case where the nominal
design point belongs to E , i.e., when the controller satisfies the requirements for the nominal plant.
One of the tasks of interest is to assign a measure of robustness to a controller based on measuring
how much the reference set can be deformed before intersecting the failure domain. This requires
specifying what we mean by a deformation. The Homothetic Deformation of Ω with respect to the
nominal parameter point p̄ by a factor of α ≥ 0, is the set H(Ω,α) ∆= {p̄ + α(p− p̄) : p ∈ Ω}. The
factor of this deformation, α, is called the Similitude Ratio. While expansions are accomplished
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when α > 1, contractions result when 0 ≤ α < 1. Hereafter, deformations must be interpreted as
homothetic expansions or contractions. For purposes of this paper, two uncertainty sets will be
called Proportional if there exist a homothetic deformation that relates them, e.g., R(p̄,m) and
R(p̄,αm) are proportional sets since H(R(p̄,m),α) = R(p̄,αm).

Intuitively, one imagines that a set proportional to the reference set is being deformed with
respect to the nominal parameter point until its boundary touches the boundary of the failure
domain, i.e., until at least one member of the deformed set is at the verge of violating one or more
closed-loop requirements. A point where the deforming set touches the failure domain is a Critical
Parameter Value (CPV). The CPV, which will be denoted as p̃, might not be unique. The deformed
set is called the Maximal Set (MS) and will be denoted as M. The Critical Similitude Ratio (CSR),
denoted as α̃, is the similitude ratio of that deformation. The CSR is a non-dimensional metric
that quantifies the size of the MS, while the Parametric Safety Margin (PSM)14 is its dimensional
equivalent. Formulations that enable the deformation of hyper-spherical and hyper-rectangular sets
are available.14 Those corresponding to the latter are presented next.

Recall that the infinity norm is defined as ‖x‖∞ ∆= supi{|xi|}. Let us define the scaled infinity
norm as ‖x‖∞m

∆= supi{|xi|/mi}. The deformation of the reference set R(p̄,m) when d̄ ∈ E leads
to the following expression for the CPV of the jth requirement

〈p̃j , α̃j〉 = argmin
p,α

{
α : gj(p, d̄) ≥ 0, p̄− αm ≤ p ≤ p̄ + αm

}
, (8)

The overall CPV and CSR are given by

p̃ = p̃k, (9)

α̃ = α̃k, (10)

where
k = argmin

1≤j≤dim(g)

{
‖p̃j − p̄‖∞m

}
. (11)

On the other hand, if d̄ *∈ E , we have

p̃j = argmin
p

{
‖p− p̄‖∞m : gj(p, d̄) ≤ 0

}
, (12)

and
p̃ = argmin

p

{
‖p− p̄‖∞m : gj(p, d̄) ≤ 0, j = 1, . . . ,dim(g)

}
, (13)

One might argue that the solution to the last two equations is unnecessary since d̄ does not even
satisfy the design requirements for the nominal plant (i.e., plant evaluated at the nominal parame-
ter point). However, one situation in which a need for this extension might arise is if an automated,
optimization driven design procedure varies the design parameter so much that constraint bound-
aries move enough to make p̄ a constraint violation point (as in Section IV). Once the CPV has
been found, the MS is uniquely determined. In this case, the corresponding MS is given by

Mp = R(p̄, α̃m). (14)

When the uncertainty model is probabilistic, a natural quantifier of robustness is the probability
of violating the closed-loop requirements. This probability, called the Failure Probability, will
be denoted as P [F ]. The formulation above, which enables the deformation of sets in p-space,
can be extended to the standard normal space, called the u-space, via the probability preserving
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transformation u = U(p). In this setting, the deformation of the reference set R(ū,m) when d̄ ∈ E
leads to the following expression for the CPV of the jth requirement

〈ũj , α̃j〉 = argmin
u,α

{
α : gj(U

−1(u), d̄) ≥ 0, ū− αm ≤ u ≤ ū + αm
}

. (15)

The overall CPV and CSR are given by

ũ = ũk, (16)

α̃ = α̃k, (17)

where
k = argmin

1≤j≤dim(g)

{
‖ũj − ū‖∞m

}
.

The case when d̄ *∈ E can be easily inferred from Equations (12-13). In this context, the corre-
sponding MS is given by

Mu = R(ū, α̃m). (18)

Analogous to the PSM in p-space, the Reliability Index (RI)14 is a dimensional metric proportional
to the size of this set. Throughout the developments of this section the design point d̄ has been
kept fixed while sets in the original parameter space p, or its transformed version u, have been
deformed. In what follows we extend these ideas to settings where the deformations take place in
the design space or in the union of both the parameter and the design spaces.

III. Analysis of the Design Space

In this section, we develop strategies for finding lower bounds of the feasible design space E , the
robust design space Q, and the (1 − ε)-probable design space D, corresponding to a fixed control
structure. By using these bounds as constraints, the search for optimal controllers within these
sets can be efficiently performed, e.g., searching for a controller that minimizes the variability in
the system response given that P [g(p,d) > 0] < ε. We assume that a baseline controller with
parameters d̄ is available, and the design specifications in g are given. The presentation that
follows only considers the deformation of hyper-rectangular sets.

III.A. Bounding the Feasible Design Space

A lower bound for the feasible design space E is attained by deforming the reference set R(d̄,n)
about d̄ until the deformed set touches the failure region Fd(p̄). In the process, the uncertain
parameter is kept fixed at its nominal value. A natural parallelism between the concepts and
formulations used for deforming sets in the parameter space and those to be used for deforming
sets in the design space is apparent. For instance, the roles of the nominal parameter point p̄, the
nominal design point d̄, and the CPV p̃ will now be assumed by the nominal design point d̄, the
nominal parameter point p̄, and the Critical Design Value (CDV), d̃, respectively.

The critical design value and the CSR for the jth requirement are given by

〈d̃j
, α̃j〉 = argmin

d,α
{α : gj(p̄,d) ≥ 0, d̄− αn ≤ d ≤ d̄ + αn}. (19)

The overall CDV and CSR are given by

d̃ = d̃
k
, (20)

α̃ = α̃k, (21)
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where
k = argmin

1≤j≤dim(g)

{
‖d̃j − d̄‖∞n

}
.

Hence, the overall CDV is found by solving for the CDV of each individual requirement, and
selecting the closest to the nominal design point according to the scaled infinity norm. The MS
resulting from this deformation is given by

Md = R
(
d̄, α̃n

)
.

The MS is the largest hyper-rectangle proportional to R(d̄,n) which fits within the feasible design
space. Therefore, all the gains within Md satisfy the closed-loop specifications for the nominal
plant.

III.B. Bounding the Robust Design Space

A formulation that enables bounding the robust design space Q is presented next. In what follows,
we assume that the uncertainty set ∆ = R(p̄,m) is given, and that the nominal design point d̄
belongs to Q. The latter assumption holds when ∆ is a subset of the MS in Equation (14). In
contrast to the deformations presented thus far, the one required for bounding Q will take place in
both the parameter and the design spaces. Analogous to the CPV and the CDV, the Critical Pair
〈p̃, d̃〉, made of a parameter point(s) and a design point(s), results from deforming the reference
set Ω = ∆ ∪R(d̄,n), i.e., {〈p,d〉 : p ∈ ∆,d ∈ R(d̄,n)}, in the d directions until the deformed set
touches the failure region Fp,d. Note that while m depends on the prescribed uncertainty set ∆,
n is arbitrary.

The critical pair and the CSR for the jth requirement are given by

〈p̃j , d̃
j
, α̃j〉 = argmin

p,d,α

{
α : gj(p,d) ≥ 0, p̄−m < p < p̄ + m, d̄− αn ≤ d ≤ d̄ + αn

}
. (22)

The overall critical pair and the overall CSR are given by

〈p̃, d̃〉 = 〈p̃k, d̃
k〉, (23)

α̃ = α̃k, (24)

where
k = argmin

1≤j≤dim(g)

{
α̃j

}
.

Hence, the overall critical pair is found by solving for the critical pair of each individual requirement,
and selecting the one attaining the smallest CSR. The MS resulting from this deformation is given
by

Mp,d = ∆ ∪R(d̄, α̃n).

Note that the projection of this MS into the design space is a subset of the robust design space.
Therefore, all the gain vectors within the set R(d̄, α̃n) satisfy the design specifications for all the
parameter realizations in ∆.

A sketch illustrating relevant quantities is shown in Figure 2. Note that the reference set Ω
is a set in p ∪ d-space centered at 〈p̄, d̄〉 whose projection into p-space is ∆ = R(p̄,m). The
deformation of the reference set in the d direction leads to the critical pair 〈p̃, d̃〉 and to the MS
Mp,d. Since the projection of the MS into p-space is ∆, all the designs in R(d̄, α̃n) satisfy the
requirement g(p,d) ≤ 0,∀p ∈ ∆. Further, notice that the projection of the MS into d-space is a
subset of Q(∆).
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Figure 2. Relevant metrics in the bounding of the robust design space.

III.C. Bounding the (1− ε)-Probable Design Space

A formulation that enables bounding the (1− ε)-probable design space D(fp, ε) for a given value of
ε is presented next. In what follows we assume that a probabilistic uncertainty model is available.
Let us call the Exclusion Set, X , a set in the parameter space that satisfies P [X ] = 1− ε. Clearly,
X is not unique. The following expressions, derived in detail in the companion paper [14], enable
the calculation of several exclusion sets in p- and u-spaces. The first one is

Xp = R
(

p̄, δ
m

‖m‖

)
, (25)

where the value of δ is given by

dim(p)∏

i=1

F pi

(
p̄i +

δmi

‖m‖

)
− F pi

(
p̄i −

δmi

‖m‖

)
= 1− ε,

and F p is the cumulative distribution function associated with fp. In this expression, the values
of p̄ and m are up to the analyst. Alternatively, we can also use

Xu = S(0, δ), (26)

where the value of δ is given by

Λl(δ) = 1− ε,

where

Λl(δ) =






erf
(

δ√
2

)
−

√
2
π

(
δl−2

(l−2)!! + δl−4

(l−4)!! + · · ·+ δ
1!!

)
e−δ2/2 if δ ≥ 0, l odd

1−
(

δl−2

(l−2)!! + δl−4

(l−4)!! + · · ·+ δ2

2!! + 1
)

e−δ2/2 if δ ≥ 0, l even
0 otherwise
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l = dim(p), and n!! is the double factorialc. In addition, we may also consider

Xu = R
(

ū, δ
m

‖m‖

)
, (27)

where the value of δ is given by

dim(p)∏

i=1

Φ
(

ūi +
δmi

‖m‖

)
− Φ

(
ūi −

δmi

‖m‖

)
= 1− ε,

and Φ is the cumulative distribution function of the univariate standard normal random variable.
In the latter expression, ū and m are up to the analyst.

While Equation (25) only applies to the case of independent random variables the other two
require the U transformation. Note that the hyper-spherical set centered at the origin of the
standard normal space contains the largest probability per unit of volume. This implies that Xu

in Equation (26) is the set in u-space of smallest volume whose probability is 1− ε.
Note that all the design points that are robust to ∆ = X , satisfy the chance constraint in

Equation (7). The bounding of D will be performed by searching for a MS in p ∪ d-space whose
projection into the parameter space is the exclusion set. As with the bounding of the robust design
space, we assume that the nominal design point d̄ belongs to D. The membership of d̄ in D is
guaranteed when the probability of the MS in Equation (14) is larger than 1−ε. In the presentation
that follows we will only consider exclusion sets in u-space. As before, the critical pair 〈ũ, d̃〉 results
from deforming the reference set Ω = Xu∪R(d̄,n) in the d directions until the deformed set touches
the failure region U(Fp,d). In this context, the critical pair and the CSR for the jth requirement
are given by

〈ũj , d̃
j
, α̃j〉 = argmin

u,d,α

{
α : gj(U

−1(u),d) ≥ 0,u ∈ Xu, d̄− αn ≤ d ≤ d̄ + αn
}

. (28)

The second constraint is equal to ‖u‖ < δ when the exclusion set is hyper-spherical and to ‖u −
ū‖∞m‖m‖ < δ when it is hyper-rectangular.

The overall critical pair and CSR are also given by Equation (23). The MS resulting from this
deformation is given by

Mu,d = Xu ∪R(d̄, α̃n). (29)

The projection of the MS into the design space is a subset of the (1 − ε)-probable design space.
Therefore, all the gain vectors within the set R(d̄, α̃n) satisfy the closed-loop specifications with
probability of at least 1− ε.

A sketch illustrating relevant quantities is shown in Figure 3. The bottom plot shows that
the probability of the exclusion set is 1− ε by construction. While this plot shows the probability
density function in u-space, the one in the top shows the u∪d-space. Note that the projection of the
reference set Ω, which is centered at 〈0, d̄〉, into u-space is the exclusion set Xu. The deformation
of the reference set in the d direction leads to the critical pair 〈ũ, d̃〉 and to the MS Mu,d. Since
the projection of the MS into u-space is the exclusion set, all the designs in R(d̄, α̃n) satisfy the
requirement P [g(p,d) > 0] ≤ ε. Further notice that the projection of the MS into d-space is a
subset of D(fp, ε).

cRecall that the double factorial is defined as

n!! =

(
n · (n− 2) · · · 5 · 3 · 1 n > 0 and odd
n · (n− 2) · · · 6 · 4 · 2 n > 0 and even
1 n = −1, 0
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Figure 3. Relevant metrics in the bounding of the (1− ε)-probable design space

IV. Control Tuning

In this section we seek to improve the robustness characteristics of a baseline controller by
tuning its gains. In principle, the targeted controllers will realize the largest Mp, or Mu the
control structure allows. Note that these maximal sets are those from Equations (14) and (18),
not those from Section III. The three formulations to be presented will evaluate the robustness
characteristics of any design point considered during the search for the optimum (i) by sizing the
exact MS, (ii) by using a multi-point approximation to the MS, and (iii) by using a multi-point
evaluation of the constraint function. Only the first of these three strategies always leads to the
intended designs. The other two may not due to the approximate nature of the formulation.
However, their relaxed computational demands make them attractive in spite of their potential
drawbacks. Because the framework in Reference [14] allows for a rigorous analysis of any given
design point, the inaccuracies resulting from such drawbacks can be detected a posteriori.

IV.A. Maximization of the Critical Similitude Ratio

This problem of interest is given by

d∗ = argmax
d

{γα̃(d)} , (30)

where α̃ is the CSR in Equation (10) or Equation (17), and γ = 1 if d ∈ E , otherwise γ = −1.
Figure 1 illustrates the optimal design d∗ on a one-dimensional setting. Recall that determining
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the α̃ corresponding to any given design point entails solving an optimization problem. Therefore,
in contrast to all the problem formulations posed thus far, this one has an optimization in the outer
loop and another one in the inner loop. While the outer loop searches for the best set of gains d∗,
the inner one searches for the overall CPV, i.e., p̃ or ũ, corresponding to the design point under
evaluation.

The nested optimization in Equation (30), which typically results from worst-case-based design
policies, usually imposes stringent computational demands. Multi-point approaches can be used
to reduce the computational burden associated with solving Equation (30). The multi-point ap-
proaches in the next two sections may result in designs which are suboptimal or infeasible. However,
these design points can be used as initial guesses when solving Equation (30). Numerical experi-
ments showed that this practice usually results in more rapid convergence and less computational
burden.

IV.B. Expansion of an Approximate MS

Even though the strategy considered herein is applicable to sets in both p- and u-spaces, only the
case in u-space will be presented. An approximation to the solution of Equation (30) is given by

〈d∗, δ∗〉 = argmax
d,δ

{
δ : max

j,i

{
gj(U

−1(ū + δui),d)
}

< 0, δ ≥ 0
}

, (31)

where ui for i = 1, · · ·n are parameter-points on the surface of either S(0, 1) or R(0,m). Ideally,
such points, which only have to be computed once, should be uniformly distributed over the chosen
surface. Note that this formulation replaces the inner optimization loop in Equation (30) by a
multi-point constraint over parameter points lying on the surface of the approximate MS.

Since the satisfaction of the multi-point constraints does not guarantee the enforcement of the
true requirement M ⊂ Fc

u,d, this formulation may lead to suboptimal designs. Besides, the larger
the value of δ, the smaller the density of points over the surface of the approximated MS, and the
greater the chance to converge to an overly large approximation of the true MS.

Procedures to generate the ui points are presented next. For the hyper-spherical case, the
desired points result from generating n samples of an uncorrelated standard normal vector, and
then scale them to have unit length. The resulting points not only lie on the surface of a unit
sphere centered at the origin but will also be uniformly distributed over that surface. Now consider
the hyper-rectangular case. Let qi be a sample of points distributed uniformly over the surface of
the unit sphere as the ui chosen for the hyper-spherical case. Each qi will be projected radially
onto the surface R(0,m). Since this surface is characterized by ‖u‖∞m = 1, the desired point is

ui =
qi

‖qi‖∞m
.

The concentration of points resulting from this scheme increases with the closeness of the surface
to the origin. Therefore, there will be a lower density of samples in the vicinity of the corners of the
hyper-rectangle. An alternative approach, whose sample points are more evenly distributed over
the surface of the hyper-rectangle, is as follows. The points ui can also be obtained after mapping
the qis through the inverse of the Q-transformation[15], which is given by

Q−1(q) =
‖q‖

max{|q|}diag{m}q.

This scheme leads to a parameter point set that has approximately the same number of points in
each face of R(0,m). In contrast to the previous distribution, the concentration of points in a
given face of the hyper-rectangle will be higher closer to the edges.

11 of 17

American Institute of Aeronautics and Astronautics



IV.C. Multi-point Constraint Minimization

In this formulation we search for a control design that minimizes the largest value of the constraint
function at a set of fixed parameter points. Let the points ui for i = 1, . . . , n be on the surface
of an arbitrary set in the parameter space. Points on the surface of hyper-spherical and hyper-
rectangular sets can be obtained by scaling the points resulting from applying the algorithms of
the previous section. We would like for all the members of such a set to be well into the non-failure
region, U(Fc

p(d)). In this context, the formulation of interest is given by

d∗ = argmin
d

{
max

j,i
{gj(U

−1(ui),d)}
}

. (32)

This equation has the minimax structure also used in Reference [8]. Note that points in the
feasible design space can be identified by using ū as one of the parameter points and attaining
g(U−1(ū),d∗) ≤ 0. This formulation uses the worst-case value of the constraint function at the
sampled points to approximate the separation between the set whose surface is being sampled and
the failure domain; i.e., the more negative the value of g at the sampled points the further the
failure domain is from the set. Obviously, this approximation is not good in general. For this and
the previous formulation, it is easy to foresee situations leading to unacceptable designs, e.g., having
a failure domain that extends to the interior of the sampled set but for which g(U−1(ui),d∗) ≤ 0
for i = 1, . . . , n. When cases like this arise, one should add the CPV corresponding to a faulty
design to the set of parameter points to be used in subsequent searches.

IV.D. Discussion

Control design formulations aiming at the minimization of the failure probability are available
[12,13,10]. Numerical difficulties arise when these formulations use sampling-based approximations
to P [F ]. This occurs because the approximation is a piecewise constant, discontinuous, and non-
smooth function of the design variable, properties which cause problems when derivatives are
required. Note that the calculation of P [F ] does not require the definition of a nominal parameter
point, and designs attaining small failure probabilities may have parts of their failure domain well
inside ∆. Designs attaining both a small P [F ] and a large separation between p̄ and F can be
pursued by using the CSR of a RI in Equation (30). This dual notion of robustness can also
be attained by searching for a design point d in the set R(d̄, α̃n) that minimizes P [F ]. The set
R(d̄, α̃n) is the bound to D that results from the deformations of Section III.C. The resulting
controller not only minimizes the failure probability but also attains a RI larger or equal to the
value of δ used. The hybrid method of Reference [16] is best suited for the estimation of this
probability since the upper bound to P [F ] corresponding to Mu = Xu holds for all design points
in R(d̄, α̃n).

V. Example: Benchmark Robust Control Problem

V.A. Problem Statement

The tuning of a controller designed for the robust control challenge problem17 posed in the 1990
American Control Conference is considered next. The control verification of several solutions to
this problem is presented in Reference [14]. The benchmark plant, shown in Figure 4, is a two-
mass/spring system with a non-collocated sensor actuator pair. Several design problems were posed
based on this setting. In all of them, stability and performance requirements in the time domain
were prescribed for plants with uncertain masses and stiffness whose values lie within a bounded
set. As in Reference [18], additional sources of uncertainty are considered herein to fully exercise the

12 of 17

American Institute of Aeronautics and Astronautics



Figure 4. Two-mass spring system.

scope of the methodology. We added a non-linear spring with constant kn, a time delay τ denoting
a first order lag between controller command and actuator response, and a loop-gain uncertainty
f resulting from multiplicative variation in observation, control gain and/or actuator failure.

The state space plant model is

ẋ1 = x3

ẋ2 = x4

ẋ3 =
k

m1
(x2 − x1) +

kn

m1
(x2 − x1)3 +

fu

m1
,

ẋ4 =
k

m2
(x1 − x2) +

kn

m2
(x1 − x2)3 +

w2

m2
,

τ u̇ = uc − u.

While the output z and the observed variable y are both equal to x2, only the disturbance w2

will be active. The uncertain parameter vector is p = [m1,m2, k, kn, τ, f ]T whose nominal value is
p̄ = [1, 1, 1, 0, 0, 1]T . Note that the nominal values of the additional parameters lead to the plant
used in the original benchmark problem. In order to prevent deformations leading to infeasible
plants, the constraints m1 > 0, m2 > 0, k > 0, τ > 0 and f > 0 are imposed on the optimization
problem used to calculate the CPVs.

The specifications imposed on the closed-loop system are:

1. Local closed-loop stability.

2. Settling time: the response to a unit-impulse must fall between ±0.1 after 15s.

3. Control saturation: the control signal corresponding to the impulse response must fall between
±1.

In the context of this paper, the corresponding set of constraints is

g =
[

max
1≤i≤np

{,(si)}, max
t>15

{|z(t)|}− 0.1, max
t>0

{|u(t)|}− 1
]T

,

where si is a closed-loop pole of the linearized system and ,(·) is the real part operator. Eleven
controllers were designed for the above problem by several authors. The controllers have been
design using several different methods, including robust H∞, loop-transfer recovery, imaginary-
axis shifting, constrained optimization, structured covariance, game theory, the internal model
principle18,19 and µ-synthesis.20 A Monte Carlo-based analysis of some of these controllers is
available.18
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The state space representation of a controller is given by

ẋc = Acxc + Bcy,

uc = Ccxc + Dcy,

where xc is the controller state, uc is the actuator command, and Ac, Bc, Cc, and Dc are the
controller matrices. The controllers considered here are the ones labeled as A, B, C, D, E, F , and
H in Reference [18], and the controllers designed for problems one and two in Reference [19] and
Reference [20]. In this paper, the controllers from Reference [19] will be labeled as W1 and W2,
and those from Reference [20] will be labeled as B1 and B2.

Figure 5. Percentiles 2% apart of the impulse response and control signal for B2.

Figure 6. Percentiles 2% apart of the impulse response and control signal for W2.
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Figure 7. Percentiles 2% apart of the impulse response and control signal for Z.

V.B. Example: Control Tuning

In this section we search for a controller with improved robustness characteristics by applying the
developments of Section IV. For this, we assume that m1, m2, k, kn, τ and f are independent,
Beta distributed random variables with shape parameters, [5, 5], [5, 5], [2, 3.7], [6, 6], [0.3, 5], and
[0.5, 1.5], having the support sets [0, 2], [0, 2], [0.5, 2], [−0.5, 0.5], [ε, 0.1] and [0.5, 1.5], respectively.
The ranges of variation of the parameters and the shapes of the distributions are assigned according
to engineering judgment.

The spherical RIs corresponding to each individual requirement and for all controllers are pro-
vided in Table 1. According to this metric, the controller D is the one with best stability and settling
time characteristics while W2 has the best figure of merit for control saturation. We will use W2

as a baseline controller. Note that this controller does not satisfy the settling time requirement for
the nominal plant. The formulation in Section IV.B led to the controller

Ac =





−2.067 −1.049 −0.9358 −0.757
4 0 0 0
0 1 0 0
0 0 0.5 0




, Bc =





1
0
0
0





Cc =
[
−0.2441 0.1667 0.2567 0.06584

]
X, Dc = 0,

which will be labeled as controller Z hereafter. A formal analysis of this controller, done using
the developments in Reference [14], was performed. The stability margins attained by Z are
5db and 31.62deg while the spherical reliability indices for stability, settling time and control are
βS(ũ1) = 1.746, βS(ũ2) = 0.356 and βS(ũ3) = 1.940. As compared to the baseline, this controller
now satisfies the design requirements for the nominal plant. As compared to all other controllers,
Z has a substantially better overall RI. In particular, the overall RI is more than five times larger
than the one corresponding to B2, which was the controller with best robustness characteristics.
Note that the improvement in the settling time specification, which was the critical requirement,
was attained by trading-off robustness in the other two specifications.
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Table 1. Spherical RIs.

Controller Stability Settling time Control
βS

(
ũ1

)
βS

(
ũ2

)
βS

(
ũ3

)

A 0.665 −0.037 0.913

B 0.992 −0.319 1.169

C 1.01 −0.336 1.191

D 2.366 0.598 −∞

E 0.690 −3.517 0.374

F 1.627 0.025 −∞

H 1.050 −0.009 1.174

W1 1.027 0.0009 1.152

W2 2.147 −0.072 2.287

B1 0.497 0.030 0.005

B2 0.852 0.066 0.236

Z 1.746 0.356 1.940

The MS that corresponds to this controller is Su = S(0, 0.364). Therefore, the controller Z
satisfies the closed-loop specifications for all the members of this set. Let us consider a uniformly
distributed uncertainty model having this MS as the support set. Simulations of the impulse
response and control signal for the controller B2 lead to figure 5. Therein, 2% of the time responses
are between any pair of adjacent dashed lines. The horizontal and vertical lines are used to delimit
regions where the closed-loop specifications are violated. Note that the impulse response violates
the requirement about t = 15s with large probability while the control is at the verge of exceeding
the lower limit at t = 2.5s. Figure 6 shows the same information for the baseline controller, W2.
As before, the settling time requirement is violated with large probability. However, considerably
less actuation is now required. Figure 7 shows the responses corresponding to Z. Note that all
requirements are satisfied, with the settling time being the critical one (i.e., the specification at the
verge of being violated).

This analysis is possible because of our ability to determine the largest uncertainty set for which
the closed-loop specifications are satisfied. This information cannot be obtained by any sampling
method unless an infinite number of simulations are made.

VI. Concluding Remarks

Optimization-based strategies for control analysis and tuning at the control verification stage
are proposed herein. This entails dealing with complex non-linear systems having an arbitrary
functional dependency on the uncertain parameters and for which stability and performance speci-
fications are both present. The mathematical foundation enabling these developments is the ability
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to calculate sets that bound regions of satisfactory closed-loop performance. Metrics that evaluate
the size of such sets are used as control verification metrics. Formulations enabling the exploration
of the design space, and the improvement of the robustness characteristics of baseline controllers
were proposed and exemplified. The scope and numerical requirements of the tools developed make
them suitable for realistic control engineering problems.
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